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Abstract. The magnetomechanical response of uniformly magnetized nematic liquid crystals
with positive diamagnetic anisotropy, often named ferronematics, is studied. Particular attention
is given to the motions which are controlled by reactive forces originating from antisymmetric
magnetic stresses. We show that in this case an incompressible ferronematic soft matter can
transmit perturbation by a transverse magnetotorsion wave travelling along the applied magnetic
field and that this feature of ferronematics can be utilized to measure their magnetic anisotropy.
The dispersion equation characterizing the magnetotorsion wave is derived, followed by a brief
discussion of the possible experimental identification of the low-frequency mode predicted.

We discuss low-frequency hydrodynamic fluctuations induced in the volume of a magnetized
nematic liquid crystal with positive diamagnetic anisotropy,χa. Our goal is to show that this
kind of nematics, often referred to as ferronematics, can transmit perturbation by transverse
magnetomechanical waves exhibiting the non-Hookean rheology of nematic soft matter, and
that this property of ferronematics can be adopted to measure their magnetic anisotropy.

Our considerations are based on the following experimental and theoretical observations.
The magnetic field,H, penetrating in the sample, intensifies the initial molecular field by
the supplementary field,h = χa(n ·H)H, whereχa > 0 andn is the director. As shown
in [1], the most prominent effect of the magnetic field is that it imparts to ferronematic matter
a certain portion of magnetotorsion elasticity, which is described by antisymmetric stresses.
In the presence of the field,h, the total stresses in the nematic medium are described by the
tensor

σM
ik = σ e

ik + τik τik = 1
2(nihk − nkhi) (1)

whereσ e
ik is the symmetric tensor of Eriksen’s stresses (see equation (3.100) of section 3.5.2

in [1]) andτik is the completely antisymmetric stress tensor introduced in [1]. The physical
meaning of De Gennes–Prost’s stresses,τik, can be clarified by considering linearized equations
of nematodynamics

∂δvk
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describing small-amplitude fluctuations of incompressible flow, provided that the molecular
field is unchanged. In equations (2)–(4),ρ is the density,δvi is theith component of velocity
andδωi stands for theith component of vorticity (see also [1,2]). The summation over repeated
indices is presumed. The conservation of energy in the process of motion is controlled by the
equation

∂

∂t

∫
1

2
ρδv2 dV = −

∫
δσ e

ikδvik dV −
∫
δτkiδωik dV (5)

where

δvik = 1

2

(
∂δvk

∂xi
+
∂δvi

∂xk

)
δωik = 1

2

(
∂δvk

∂xi
− ∂δvi
∂xk

)
. (6)

The link between the tensor of the rotational distortions,δωik, and the vector field of the
vorticity, δωi , is given byδωik = εijkδωj . The equation of energy balance (5) is obtained
after multiplication of (3) withδvi and integrating over the volume,V , of the sample. Here,
we focus solely on the bulk response of ferronematics, therefore the surface integrals in (5)
have been omitted. Equations (2)–(6) exhibit the fact that fluctuations in Eriksen’s stresses,
δσ e

ik, are accompanied by symmetric strains,δvik; the behaviour typical of Newtonian viscous
liquid and Hookean elastic distortions. In contrast, fluctuations in De Gennes–Prost’s stresses,
δτik, are associated with antisymmetric rotational distortions,δωik. In [1], it was argued that
antisymmetric stresses are responsible for the transmission of torques (see section 3.5.3 of [1]).
Our purpose here is to show that the torque induced by the magnetic field can be propagated
in the form of transverse magnetotorsion waves.

To accentuate the key points of magnetomechanical response, we confine our consideration
to dissipation-free motion of the ferronematic medium caused by perturbation of the
equilibrium state in which the director,n, is firmly aligned in the direction of the uniform
magnetic field

n = H
H
= const and h = χaHH = const. (7)

Given this, equation (4), which describes slight deflections ofn from the direction of the
applied magnetic fieldH, can be represented as follows

∂δn(r, t)

∂t
= 1

H
[δω(r, t)×H] . (8)

In the incompressible nematic medium, the fluctuating velocity,δv(r, t), and displacement,
δu(r, t), can be represented in the form of general rotational identities (see equation (3.108)
of [1])

δv(r, t) = ∂δu(r, t)

∂t
= [δω(r, t)× r] (9)

δu(r, t) = [δφ(r, t)× r] δω(r, t) = ∂δφ(r, t)

∂t
. (10)

This representation is dictated by the rotational character of hydrodynamic fluctuations whose
development is controlled by antisymmetric stresses. Inserting this definition ofδω(r, t) into
(8), one finds

δn(r, t) = [δφ(r, t)× n]. (11)

Equations (9)–(11) show that the centres of inertia and director for every macroscopically small
element undergo fluctuations driven by vortical flow. The above simultaneous representation
of fluctuating variables has been suggested in [1] in the context of the hydrostatic balance of
torques. Guided by similar motivations, we show that such a form for bothδn andδv can be
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used efficiently to search for oscillatory behaviour of torque. For incompressible flow we can
write

∇ · δv(r, t) = 0 and ∇ · δu(r, t) = 0. (12)

By inserting the above definition ofδu, equation (10), into (12) we immediately find:
divδu = r · curlδφ = 0. This equation would be an identity, if

∇ × δω(r, t) = 0 and ∇ × δφ(r, t) = 0. (13)

Acting by operator div onδn, we get

∇ · δn(r, t) = 0. (14)

Equations (12)–(14) express kinematic constraints on the permissible motions and show that
perturbed fluctuations are not accompanied by splay strains. However, these equations say
nothing about possible coupling betweenδn andδv. The main objective of our further analysis
is to find the hydrodynamic mechanism providing coherent oscillations of these quantities. We
show that the reactive force,gi = ∇kδτik, can provide such a behaviour. As a result, we arrive
at the following closed set of equations

∇ · δv = 0 ∇ · δn = 0 (15)

ρ
∂δv

∂t
= χaH

2
∇ × [δn×H] (16)

∂δn(r, t)

∂t
= 1

2H

[
[∇ × δv(r, t)] ×H]. (17)

Equations (16) and (17) exhibit an essentially elastodynamic character of interaction between
fluctuating director,δn, and the applied magnetic field,H. This interaction is mediated by
rotational distortions described by the vorticity,δω, of the nematodynamic flow.

Let us consider perturbation in the plane-wave form

δv = ṽ exp(ikr − iωt) δn = ñ exp(ikr − iωt). (18)

Herek stands for the wave vector andω is the frequency of oscillations;̃v andñ are small
constant vectors. Substituting (18) into (15), one has

(k · δv) = 0 (k · δn) = 0. (19)

Substitution of (18) into (16) yields

ωρδv = −χaH
2
(k ·H)δn. (20)

Inserting (18) into (17), we obtain

ωδn = − 1

2H
[(k ·H)δv − k(δv ·H)] . (21)

Taking the scalar product of (21) withk 6= 0 and considering (19), we get

(δv ·H) = 0. (22)

Thus, the kinematics of simultaneous fluctuations in the velocity and director selects only those
coupled oscillations for whichδv ⊥ H andδn ⊥ H. Finally, the characteristic system of
equations reads

ωρδv +
χaH

2
(k ·H)δn = 0 (23)

ωδn +
1

2H
(k ·H)δv = 0. (24)
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The inspection of admissible directions of the wave propagation compatible with requirements
(19) and (22), leads to the conclusion thatk must be either parallel or antiparallel toH:
(k ·H) = ±kH . With this in mind, from (23) and (24) we immediately find

ω2 = V 2
mtk

2 V 2
mt =

χa

4ρ
H 2. (25)

This dispersion equation uniquely defines the transverse magnetotorsion wave propagating with
the phase velocity,Vmt. In this wave the director and velocity execute coupled oscillations in
the plane perpendicular toH. Notice that for nematics with negative diamagnetic anisotropy
it must be a relaxation mode. Such a sensitive response of magnetotorsion to the sign of
χa might be useful in the practical determination of magnetic anisotropy of synthesized
new nematics. The propagation of a magnetotorsion wave in two opposite directions is the
dynamical manifestation of the fact that in a magnetized ferronematic liquid crystal, the two
directionsn and−n are energetically equivalent. The above consideration shows that the
magnetization of a randomly fluctuating nematic medium will stabilize a two-dimensional
incompressible flow circulating back-and-forth in the plane, perpendicular to the applied
magnetic field. From equations (23) and (24) it follows

ρδv2

2
= χaH

2

2
δn2. (26)

That is, the mean energy of the magnetorsion wave in the kinetic motions and in the motions
of director is the same. Taking numerical valuesχa = 1.2 × 10−7, H = 104–105 G and
ρ = 1 g cm−3 (typical of the PAA and MBBA nematics), we obtainVmt ∼ 1–10 cm s−1. For
comparison, the speed of a longitudinal sound wavecs ∼ 104–105 cm s−1. At k = 104 cm−1,
the above dispersion equation leads to the resonance frequency of the order ofω ∼ 104 s−1.
The resonance frequency is shifted when the intensity of the applied magnetic field is changed.
The latter effect can be detected by optical means. We believe that the above physical features
and estimates can be efficiently utilized as a guideline in search of the magnetotorsion mode
predicted on currently operating facilities [3–5].
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